您好,欢迎来到游6网!

当前位置:首页 > AI > 抠像任务:基于飞桨复现BackgroundMattingV2模型

抠像任务:基于飞桨复现BackgroundMattingV2模型

发布时间:2025-07-18    编辑:游乐网

本文介绍飞桨框架复现Real-Time-High-Resolution-Background-Matting论文的项目,含相关链接与依赖。论文网络分base和refine模块,复现采用多阶段训练,用多个数据集,添加laplacian_loss,还说明训练、验证及预测过程。

抠像任务:基于飞桨复现backgroundmattingv2模型 - 游乐网

前言

人工智能创新应用大赛——飞桨开源框架前沿模型复现专题赛,使用Paddle复现Real-Time-High-Resolution-Background-Matting论文。

github: https://github.com/zackzhao1/BackgroundMattingV2-paddle

aistudio: https://aistudio.baidu.com/aistudio/projectdetail/2467759

依赖环境: paddlepaddle-gpu2.1.2 python3.7

论文简介

该方法中将整个pipeline划分为两个部分:base和refine部分,前一个部分在缩小分辨率的输入下生成粗略的结果输出,其主要用于提供大体的区域位置定位(coarse predcition)。后一个网络在该基础上通过path selection选取固定数量的path(这些区域主要趋向于选择头发/手等难分区域)进行refine,之后将path更新之后的结果填充回原来的结果,从而得到其在高分辨率下的matting结果。抠像任务:基于飞桨复现BackgroundMattingV2模型 - 游乐网 图1:BGMv2的网络结构,其中蓝色的是base网络,绿色的是refine网络

论文细节

BGMv2的网络分成两个模块: GbaseGbase 和 GrefineGrefine 。给定一张输入图像 II 和空屏图像 BB ,首先将其降采样 cc 倍,得到 IcIc 和 BcBc 。 GbaseGbase 取 IcIc 和 BcBc 作为输入,输出同样是降采样尺寸的前景概率 acac ,前景残差 FcRFcR ,Error Map EcEc 以及隐层节点特征 HcHc 。然后 GrefineGrefine 根据 EcEc 中值较大的像素点取 HcHc ,II 以及 BB 中对应的patch(难样本)来优化 FRFR 和 aa ,整个过程如图1所示。

base网络

BGMv2借鉴了deeplab v3的网络结构,包含骨干网络,空洞空间金字塔池化和解码器三部分组成:

骨干网络:可以采用主流的卷积网络作为,作者开源的模型包括ResNet-50,ResNet-101以及MobileNetV2,用户可以根据速度和精度的不同需求选择不同的模型;空洞空间金字塔池化:(Atrous Spatial Pyramid Pooling,ASPP)是由DeeplabV3提出并在实例分割领域得到广泛应用的结构,人像抠图和实例分割本质上式非常接近的,因此也可以通过ASPP来提升模型准确率;解码器:解码器是由一些列的双线性插值上采样和跳跃连接组成,每个卷几块由 333∗3 卷积,BN以及ReLU激活函数组成。

如前面介绍的, GbaseGbase 的输入是 IcIc 和 BcBc ,输出是 acac , FcRFcR , EcEc 以及 HcHc 。其中Error Map EcEc 的Ground Truth是 EE∗ ,Error Map是一个人像轮廓的一个图。通过对Error Map的优化,可以使得BGMv2有更好的边缘检测效果。

Refine网络

GrefineGrefine 的输入是在根据 EcEc 提取的 k 个补丁块(patches)上进行进行精校, k 可以提前指定选择top- k 个或是根据阈值卡若干个。用户也可以根据速度和精度的trade-off自行设置 k 或者阈值的具体值。对于缩放到原图 1/c1/c 的 EcEc ,我们首先将其上采样到原图的 1/4 ,那么 E4E4 中的一个点便相当于原图上一个 444∗4 的补丁块,那么相当于我们要优化的像素点的个数总共有 16k 个。

GrefineGrefine 的网络分成两个阶段:在1/2的分辨率和原尺寸的分辨率上进行精校。

抠像任务:基于飞桨复现BackgroundMattingV2模型 - 游乐网

Stage 1:首先将 GbaseGbase 的输出上采样到原图的 1/2 ;然后再根据 E4E4 选择出的补丁块,从其周围在其中提取 888∗8 的补丁块;再依次经过两组 333∗3 的有效卷积,BN,ReLU将Feature Map的尺寸依次降为 666∗6 和 444∗4 。

Stage2:再将Stage 1得到的 444∗4 的Feature Map上采样到 888∗8 ,再依次经过两组 333∗3 的有效卷积,BN,ReLU将Feature Map的最终尺寸降为 444∗4 。而这个尺寸的Feature Map对应的ground truth就是我们上面根据 E4E4 得到的补丁块。最后我们将降采样的 acac 和 FcRFcR 上采样到原图大小,再将Refine优化过后的补丁块替换到原图中便得到了最终的结果。

复现思路

1.在复现过程中我们参考论文中的方法,做了多阶段的训练,并做了修改:

stage1:使用VideoMatte240K数据集做预训练,提升模型鲁棒性。注:由于预训练耗时较长,提供了训练好得模型,方便在自己的数据上微调,模型为stage1.pdparams。

stage2:使用Distinctions646数据集做微调,提升模型细节表现。注:此时模型最好精度为SAD: 7.58,MSE: 9.49,模型为stage2.pdparams。

stage3:使用个人数据集微调。注:本次比赛提交的是stage2模型,因为训练所用数据集都为公开数据集,方便复现。 原作者在论文中也使用了个人数据集微调,但没有公开。因此我增加了自己数据进行训练,没有条件的同学可以利用原工程生成pha作为训练数据。 模型最好精度为SAD: 7.61,MSE: 9.47,模型为stage3.pdparams。

2.添加了原作者新论文中用到的laplacian_loss,可以提高收敛速度。

3.模型api对照表 https://blog.csdn.net/qq_32097577/article/details/112383360?utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromMachineLearnPai2%7Edefault-2.vipsorttest&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromMachineLearnPai2%7Edefault-2.vipsorttest

复现

抠像任务:基于飞桨复现BackgroundMattingV2模型 - 游乐网

模型下载 链接:https://pan.baidu.com/s/1WfpzLcjaDJPXYSrzPWvsyQ 提取码:nsfy

训练

stage1:使用VideoMatte240K数据集做预训练,提升模型鲁棒性。

注:由于预训练耗时较长,提供了训练好得模型,方便在自己的数据上微调,模型为stage1.pdparams。

stage2:使用Distinctions646数据集做微调,提升模型细节表现。

注:此时模型最好精度为SAD: 7.58,MSE: 9.49,模型为stage2.pdparams。

**stage3:使用个人数据集微调。

注:本次比赛提交的是stage2模型,因为训练所用数据集都为公开数据集,方便复现。 原作者在论文中也使用了个人数据集微调,但没有公开。因此我增加了自己数据进行训练,没有条件的同学可以利用原工程生成pha作为训练数据。 模型最好精度为SAD: 7.61,MSE: 9.47,模型为stage3.pdparams。

In [1]
# [VideoMatte240K & PhotoMatte85 数据集](https://grail.cs.washington.edu/projects/background-matting-v2/#/datasets)# [Distinctions646_person 数据集](https://github.com/cs-chan/Total-Text-Dataset)# 数据集需要申请,请自行下载! ./run.sh
登录后复制

验证

In [2]
# 解压测试集!unzip ./data/data111962/PhotoMatte85_eval.zip -d ./data/
登录后复制In [4]
!python eval.py
登录后复制
W1013 17:35:31.830500   406 device_context.cc:404] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 10.1, Runtime API Version: 10.1W1013 17:35:31.835165   406 device_context.cc:422] device: 0, cuDNN Version: 7.6.  0%|                                                    | 0/85 [00:00登录后复制

预测

In [6]
!python predict.py
登录后复制
W1013 18:00:01.562386  1535 device_context.cc:404] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 10.1, Runtime API Version: 10.1W1013 18:00:01.567060  1535 device_context.cc:422] device: 0, cuDNN Version: 7.6.save results:./image/01_pred.jpg
登录后复制

热门合集

MORE

+

MORE

+

变态游戏推荐

MORE

+

热门游戏推荐

MORE

+

关于我们  |  游戏下载排行榜  |  专题合集  |  端游游戏  |  手机游戏  |  联系方式: youleyoucom@outlook.com

Copyright 2013-2019 www.youleyou.com    湘公网安备 43070202000716号

声明:游6网为非赢利性网站 不接受任何赞助和广告 湘ICP备2023003002号-9