基于分割网络Unet生成虚拟图像
发布时间:2025-07-22 编辑:游乐网
本文基于Unet分割网络,利用49例头部磁共振T1、T2数据,通过配准使二者解剖位置一致,转换数据格式并裁剪窗宽窗位,构建数据集。以T1为输入、T2为标签训练Unet进行回归,用SSIM评估,经200轮训练,最佳SSIM达0.571,实现由T1生成虚拟T2图像。
基于分割网络Unet生成虚拟图像
这个想法是基于
[1]高留刚, 李春迎, 陆正大,等. 基于卷积神经网络生成虚拟平扫CT图像[J]. 中国医学影像技术, 2024, 38(3):5.
【1】文章使用Unet对增强CT数据进行训练,最终预测生成对应的虚拟平扫CT图像,达到只需要对患者扫描一次CT即可,避免患者接受过多的放射辐射。
【2】因为本项目没有对应的CT数据,刚好有一个T1、T2磁共振头部公开数据,先磁共振数据进行配准,然后输入T1模态的数据到Unet中然后生成对应的T2模态数据。
1. 数据
数量:49例
模态和部位:磁共振的T1和T2头部数据
#解压数据!unzip -o /home/aistudio/data/data146796/mydata.zip -d /home/aistudio/work登录后复制In [ ]
#antspyx 是一个配准工具包,SImpleITK处理医学数据!pip install antspyx SimpleITK登录后复制In [ ]
import osimport antsimport SimpleITK as sitkfrom tqdm import tqdmimport numpy as npimport randomimport matplotlib.pyplot as pltimport paddleimport cv2登录后复制
2. 对数据进行配准
项是利用 Unet对像素数值进行回归预测。所以在进入网路之前,除了像素值的尺寸不同之外,原资料与标记资料的解剖学位置应当是相同的。因此,必须将原始资料与标签资料进行匹配,使二者重新整合。比如下面这张图片,T1有256层,T2有136层,显然是解剖位置不对,然后经过配准后的T2有256层,和T1层的解剖学位置一模一样。对齐后的数据可以作为标记输入到网络中。
#因为配准花费的时间太久太久了,本项目的数据已经包含好了配准后的数据。#因此不用运行此代码path = '/home/aistudio/work/mydata/IXI-T1'for f in tqdm(os.listdir(path)): f_path = os.path.join(path,f) m_path = os.path.join('/home/aistudio/work/mydata/IXI-T2',f.replace('T1','T2')) f_img = ants.image_read(f_path) m_img = ants.image_read(m_path) mytx = ants.registration(fixed=f_img, moving=m_img, type_of_transform='SyN') # 将形变场作用于moving图像,得到配准后的图像 warped_img = ants.apply_transforms(fixed=f_img, moving=m_img, transformlist=mytx['fwdtransforms'], interpolator="linear") # 将配准后图像的direction/origin/spacing和原图保持一致 warped_img.set_direction(f_img.direction) warped_img.set_origin(f_img.origin) warped_img.set_spacing(f_img.spacing) img_name = '/home/aistudio/work/mydata/IXI-T2-warped/'+ f.replace('T1','Warped') # ants.image_write(warped_img, img_name)print("End")登录后复制
3. 转换数据形式
原始数据格式是NIFIT,是属于医疗数据格式的一种。把NIFIT数据转换成numpy,并对窗宽窗位进行裁剪到0~255。并生成txt文档,用作构建DataSet使用。
In [ ]random.seed(2024)save_path = '/home/aistudio/work/npdata'save_origin_path = "/home/aistudio/work/npdata/origin/"save_label_path = "/home/aistudio/work/npdata/label/"if not os.path.exists(save_path): os.mkdir(save_path) os.mkdir(save_origin_path) os.mkdir(save_label_path)origin_data = '/home/aistudio/work/mydata/IXI-T1'f_list = os.listdir(origin_data)random.shuffle(f_list)split = int(len(f_list)*0.9)t_f_list = f_list[:split]v_f_list = f_list[split:]def gen_txt(f_list,name): txt = open( os.path.join(save_path,name),'w') for f in f_list: if '.ipynb_checkpoints' in f: continue f_path = os.path.join(origin_data,f) tag_path = os.path.join(origin_data.replace('T1','T2-warped'),f.replace('T1','Warped')) f_sitkData = sitk.ReadImage(f_path) tag_sitkData = sitk.ReadImage(tag_path) f_npData = sitk.GetArrayFromImage(f_sitkData) tag_npData = sitk.GetArrayFromImage(tag_sitkData) f.split('-')[0] for i in range(100,200): f_slice = np.rot90(f_npData[:,i,:],-1) tag_slice = np.rot90(tag_npData[:,i,:],-1) f_slice = (f_slice - 0) / ((835 - 0) / 255) np.clip(f_slice, 0, 255, out=f_slice) tag_slice = (tag_slice - 0) / ((626 - 0) / 255) np.clip(tag_slice, 0, 255, out=tag_slice) f_save_path = save_origin_path+f.split('-')[0]+'_'+str(i) +'.npy' tag_save_path = save_label_path+f.split('-')[0]+'_'+str(i) +'.npy' np.save(f_save_path,f_slice) np.save(tag_save_path,tag_slice) txt.write(f_save_path + ' ' + tag_save_path+ '\n') txt.close()gen_txt(t_f_list,name='train.txt')gen_txt(v_f_list,name='val.txt')print('完成')登录后复制
4. 构建Dataset
数据增强只采用 缩放到256x256。
In [4]from paddle.io import Dataset, DataLoaderfrom paddle.vision.transforms import Resizeclass MyDataset(Dataset): def __init__(self, data_dir, txt_path, transform=None): super(MyDataset, self).__init__() self.data_list = [] with open(txt_path,encoding='utf-8') as f: for line in f.readlines(): image_path, label_path = line.split(' ') image_path = image_path.strip() label_path = label_path.strip() image_path = os.path.join(data_dir, image_path) label_path = os.path.join(data_dir,label_path) self.data_list.append([image_path, label_path]) self.transform = transform def __getitem__(self, index): image_path, label_path = self.data_list[index] image = np.load(image_path) label = np.load(label_path) if self.transform is not None: image = self.transform(image) label = self.transform(label) image = image[np.newaxis,:].astype('float32') label = label[np.newaxis,:].astype('float32') return image, label def __len__(self): return len(self.data_list)BatchSize = 24transform = Resize(size=(256,256))t_dataset = MyDataset('/home/aistudio','work/npdata/train.txt',transform=transform)v_dataset = MyDataset('/home/aistudio','work/npdata/val.txt',transform=transform)train_loader = DataLoader(t_dataset,batch_size=BatchSize) val_loader = DataLoader(v_dataset,batch_size=BatchSize)登录后复制
5. 评价指标 SSIM
SSIM (Structure Similarity Index Measure) 结构衡量指标
结构相似指标可以衡量图片的失真程度,也可以衡量两张图片的相似程度,SSIM指标感知模型,即更符合人眼的直观感受。SSIM 主要考量图片的三个关键特征:亮度(Luminance), 对比度(Contrast), 结构 (Structure)。SSIM取值约接近1,两张图片的相似度约接近。两张图片一模一样,SSIM=1
In [6]参考文章 https://zhuanlan.zhihu.com/p/399215180
def ssim(img1, img2): C1 = (0.01 * 255)**2 C2 = (0.03 * 255)**2 img1 = img1.astype(np.float64) img2 = img2.astype(np.float64) kernel = cv2.getGaussianKernel(11, 1.5) window = np.outer(kernel, kernel.transpose()) mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5] mu1_sq = mu1**2 mu2_sq = mu2**2 mu1_mu2 = mu1 * mu2 sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2 ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)) return ssim_map.mean()def calculate_ssim(img1, img2): if not img1.shape == img2.shape: raise ValueError('Input images must have the same dimensions.') if img1.ndim == 2: return ssim(img1, img2) elif img1.ndim == 3: if img1.shape[2] == 3: ssims = [] for i in range(3): ssims.append(ssim(img1, img2)) return np.array(ssims).mean() elif img1.shape[2] == 1: return ssim(np.squeeze(img1), np.squeeze(img2)) else: raise ValueError('Wrong input image dimensions.')for data in t_dataset: img1,img2 = data plt.figure(figsize=(10,6)) plt.subplot(1,2,1) plt.imshow(np.squeeze(img1),'gray') plt.title("T1 mode") plt.subplot(1,2,2) plt.imshow(np.squeeze(img2),'gray') plt.title("T2 mode") print(f'SSIM:{calculate_ssim(np.squeeze(img1),np.squeeze(img2))}') break登录后复制
SSIM:0.4927141870957079登录后复制
登录后复制
6. 导入Unet模型,开始训练
Unet网络是一种语义分割网络,输入原始图像和对应的标签Mask图像到Unet网络中进行分割,最终输出和标签Mask一致的图像。实际也是对像素值进行分类。把原始图像中的像素值进行分类,到底是属于Mask图像中像素值0,还是像素值1等等。这里是使用Unet网络进行回归,因此网络输出的类别是1。
from model.unet import UNetimg = paddle.rand([2, 1, 256, 256])model = UNet()out = model(paddle.rand([2, 1, 256, 256]))print(out.shape)登录后复制
[2, 1, 256, 256]登录后复制In [9]
def evaluation(model,val_dataset): """验证""" model.eval() ssims = [] for data in val_dataset: image,label = data image = image[np.newaxis,:].astype('float32') image = paddle.to_tensor(image) pre = model(image).numpy() pre = np.squeeze(pre).astype('int32') ssims.append(calculate_ssim(np.squeeze(label.astype('int32')),pre)) return np.array(ssims).mean()def train(model,epochs): if not os.path.exists('/home/aistudio/save_model'): os.mkdir('/home/aistudio/save_model') steps = int(len(t_dataset)/BatchSize) * epochs best_ssim = 0 #记录最优的ssim得分 model.train() scheduler = paddle.optimizer.lr.PolynomialDecay(learning_rate=0.05, decay_steps=steps, verbose=False) opt = paddle.optimizer.Adam(learning_rate=scheduler, parameters=model.parameters()) for epoch_id in range(epochs): for batch_id, data in enumerate(train_loader()): images, labels = data images = paddle.to_tensor(images) labels = paddle.to_tensor(labels) predicts = model(images) mse_loss = paddle.nn.MSELoss() l1_loss = paddle.nn.L1Loss() loss = mse_loss(predicts, labels)+l1_loss(predicts,labels) if batch_id % 200 == 0: print("epoch: {}, batch: {}, loss is: {}".format(epoch_id, batch_id, loss.numpy())) loss.backward() opt.step() opt.clear_grad() #训练过程中,保存模型参数 if epoch_id % 10 == 0: paddle.save(model.state_dict(), '/home/aistudio/save_model/'+str(epoch_id)+'model.pdparams') model.eval() #训练过程中,预览效果,输入T1图片,预测t2图片 data = t_dataset[150] img,label = data input = img[np.newaxis,:].astype('float32') input = paddle.to_tensor(input) pre = model(input).numpy() pre = np.squeeze(pre) plt.figure(figsize=(12,6)) plt.subplot(1,3,1) plt.imshow(np.squeeze(img),'gray') plt.title("input: T1 mode") plt.subplot(1,3,2) plt.imshow(np.squeeze(label),'gray') plt.title("target:T2 mode") plt.subplot(1,3,3) plt.imshow(pre,'gray') plt.title("pre: T2 mode") plt.show() v_ssim_mean = evaluation(model, v_dataset) if v_ssim_mean > best_ssim: paddle.save(model.state_dict(), '/home/aistudio/save_model/best_model.pdparams') best_ssim = v_ssim_mean model.train() print(f'val_SSIM: {v_ssim_mean},Best_SSIM:{best_ssim}') #启动训练过程train(model,epochs= 200)登录后复制
epoch: 0, batch: 0, loss is: [7316.7188]登录后复制
登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制
val_SSIM: 0.39978080604275146,Best_SSIM:0.39978080604275146epoch: 1, batch: 0, loss is: [2628.9192]epoch: 2, batch: 0, loss is: [2724.6853]epoch: 3, batch: 0, loss is: [2688.8508]epoch: 4, batch: 0, loss is: [2686.88]epoch: 5, batch: 0, loss is: [2608.186]epoch: 6, batch: 0, loss is: [2520.5952]epoch: 7, batch: 0, loss is: [2692.3694]epoch: 8, batch: 0, loss is: [2702.1028]epoch: 9, batch: 0, loss is: [2628.6016]epoch: 10, batch: 0, loss is: [2485.4382]登录后复制
登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制
val_SSIM: 0.4802982366278921,Best_SSIM:0.4802982366278921epoch: 11, batch: 0, loss is: [2507.683]epoch: 12, batch: 0, loss is: [2434.3452]epoch: 13, batch: 0, loss is: [2408.262]epoch: 14, batch: 0, loss is: [2332.7097]epoch: 15, batch: 0, loss is: [2270.0247]epoch: 16, batch: 0, loss is: [2179.795]epoch: 17, batch: 0, loss is: [2138.3933]epoch: 18, batch: 0, loss is: [2093.4106]epoch: 19, batch: 0, loss is: [1887.1506]epoch: 20, batch: 0, loss is: [2024.5569]登录后复制
登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制
val_SSIM: 0.49954443953370115,Best_SSIM:0.49954443953370115epoch: 21, batch: 0, loss is: [1973.8619]epoch: 22, batch: 0, loss is: [1956.6097]epoch: 23, batch: 0, loss is: [1909.3981]epoch: 24, batch: 0, loss is: [1875.7285]epoch: 25, batch: 0, loss is: [1837.553]epoch: 26, batch: 0, loss is: [1812.5168]epoch: 27, batch: 0, loss is: [1785.5492]epoch: 28, batch: 0, loss is: [1774.7295]epoch: 29, batch: 0, loss is: [1752.758]epoch: 30, batch: 0, loss is: [1756.8203]登录后复制
登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制
val_SSIM: 0.5426780015544808,Best_SSIM:0.5426780015544808epoch: 31, batch: 0, loss is: [1735.7894]epoch: 32, batch: 0, loss is: [1827.0814]epoch: 33, batch: 0, loss is: [1753.9219]epoch: 34, batch: 0, loss is: [1779.7365]epoch: 35, batch: 0, loss is: [1752.4994]epoch: 36, batch: 0, loss is: [1747.4668]epoch: 37, batch: 0, loss is: [1735.7844]epoch: 38, batch: 0, loss is: [1769.8733]epoch: 39, batch: 0, loss is: [1759.1631]epoch: 40, batch: 0, loss is: [1630.8364]登录后复制
登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制
val_SSIM: 0.4373114577520071,Best_SSIM:0.5426780015544808epoch: 41, batch: 0, loss is: [1611.3628]epoch: 42, batch: 0, loss is: [1715.6615]epoch: 43, batch: 0, loss is: [1763.4269]epoch: 44, batch: 0, loss is: [1737.9359]epoch: 45, batch: 0, loss is: [1772.5739]epoch: 46, batch: 0, loss is: [1738.1847]epoch: 47, batch: 0, loss is: [1775.006]epoch: 48, batch: 0, loss is: [1911.8531]epoch: 49, batch: 0, loss is: [2033.4453]epoch: 50, batch: 0, loss is: [1987.3456]登录后复制
登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制
val_SSIM: 0.5579299673856584,Best_SSIM:0.5579299673856584epoch: 51, batch: 0, loss is: [1836.5175]epoch: 52, batch: 0, loss is: [1861.1411]epoch: 53, batch: 0, loss is: [1845.1718]epoch: 54, batch: 0, loss is: [1740.5963]epoch: 55, batch: 0, loss is: [1660.3125]epoch: 56, batch: 0, loss is: [1726.9702]epoch: 57, batch: 0, loss is: [1635.8535]epoch: 58, batch: 0, loss is: [1610.6799]epoch: 59, batch: 0, loss is: [1568.5394]epoch: 60, batch: 0, loss is: [1617.876]登录后复制
登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制
val_SSIM: 0.5634165131362056,Best_SSIM:0.5634165131362056epoch: 61, batch: 0, loss is: [1561.1827]epoch: 62, batch: 0, loss is: [1597.7261]epoch: 63, batch: 0, loss is: [1525.599]epoch: 64, batch: 0, loss is: [1548.1874]epoch: 65, batch: 0, loss is: [1488.4364]epoch: 66, batch: 0, loss is: [1513.0366]epoch: 67, batch: 0, loss is: [1505.5546]epoch: 68, batch: 0, loss is: [1516.5098]epoch: 69, batch: 0, loss is: [1467.4851]epoch: 70, batch: 0, loss is: [1585.8317]登录后复制
登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制
val_SSIM: 0.5709971328311436,Best_SSIM:0.5709971328311436epoch: 71, batch: 0, loss is: [1457.6887]epoch: 72, batch: 0, loss is: [1467.6174]epoch: 73, batch: 0, loss is: [1471.8882]epoch: 74, batch: 0, loss is: [1459.0536]epoch: 75, batch: 0, loss is: [1458.9404]epoch: 76, batch: 0, loss is: [1634.24]epoch: 77, batch: 0, loss is: [1650.2292]epoch: 78, batch: 0, loss is: [1437.5302]epoch: 79, batch: 0, loss is: [1421.7593]epoch: 80, batch: 0, loss is: [1413.1609]登录后复制
登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制
val_SSIM: 0.5701560896501561,Best_SSIM:0.5709971328311436epoch: 81, batch: 0, loss is: [1409.3071]epoch: 82, batch: 0, loss is: [1404.0553]epoch: 83, batch: 0, loss is: [1420.5449]epoch: 84, batch: 0, loss is: [1398.2864]epoch: 85, batch: 0, loss is: [1488.5781]epoch: 86, batch: 0, loss is: [1401.356]epoch: 87, batch: 0, loss is: [1410.7175]epoch: 88, batch: 0, loss is: [1500.6272]epoch: 89, batch: 0, loss is: [1416.3497]epoch: 90, batch: 0, loss is: [1380.4263]登录后复制
登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制
val_SSIM: 0.5465621052241267,Best_SSIM:0.5709971328311436epoch: 91, batch: 0, loss is: [1372.7605]epoch: 92, batch: 0, loss is: [1367.5848]epoch: 93, batch: 0, loss is: [1376.7378]epoch: 94, batch: 0, loss is: [1370.2089]epoch: 95, batch: 0, loss is: [1365.8433]epoch: 96, batch: 0, loss is: [1369.1512]epoch: 97, batch: 0, loss is: [1369.3212]epoch: 98, batch: 0, loss is: [1404.3115]epoch: 99, batch: 0, loss is: [1354.4286]epoch: 100, batch: 0, loss is: [1382.9532]登录后复制
登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制
val_SSIM: 0.5378666148453135,Best_SSIM:0.5709971328311436epoch: 101, batch: 0, loss is: [1387.7471]epoch: 102, batch: 0, loss is: [1424.3396]epoch: 103, batch: 0, loss is: [1349.6024]epoch: 104, batch: 0, loss is: [1366.5181]epoch: 105, batch: 0, loss is: [1352.3512]epoch: 106, batch: 0, loss is: [1353.1865]epoch: 107, batch: 0, loss is: [1352.0631]epoch: 108, batch: 0, loss is: [1343.2163]epoch: 109, batch: 0, loss is: [1345.3413]epoch: 110, batch: 0, loss is: [1346.6847]登录后复制
登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制
val_SSIM: 0.5586893791021966,Best_SSIM:0.5709971328311436epoch: 111, batch: 0, loss is: [1343.9454]epoch: 112, batch: 0, loss is: [1349.0774]epoch: 113, batch: 0, loss is: [1337.5864]epoch: 114, batch: 0, loss is: [1429.8538]epoch: 115, batch: 0, loss is: [1349.8104]epoch: 116, batch: 0, loss is: [1335.1368]epoch: 117, batch: 0, loss is: [1337.9221]epoch: 118, batch: 0, loss is: [1352.1951]epoch: 119, batch: 0, loss is: [1347.4542]epoch: 120, batch: 0, loss is: [1336.236]登录后复制
登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制
val_SSIM: 0.4977443843057142,Best_SSIM:0.5709971328311436epoch: 121, batch: 0, loss is: [1341.1677]epoch: 122, batch: 0, loss is: [1325.7648]epoch: 123, batch: 0, loss is: [1322.5]epoch: 124, batch: 0, loss is: [1322.8683]epoch: 125, batch: 0, loss is: [1319.6675]epoch: 126, batch: 0, loss is: [1319.3303]epoch: 127, batch: 0, loss is: [1320.0753]epoch: 128, batch: 0, loss is: [1316.222]epoch: 129, batch: 0, loss is: [1336.7915]epoch: 130, batch: 0, loss is: [1321.2736]登录后复制
登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制
val_SSIM: 0.47030362428033146,Best_SSIM:0.5709971328311436epoch: 131, batch: 0, loss is: [1339.2891]epoch: 132, batch: 0, loss is: [1318.2183]epoch: 133, batch: 0, loss is: [1325.5737]epoch: 134, batch: 0, loss is: [1308.886]epoch: 135, batch: 0, loss is: [1298.8752]epoch: 136, batch: 0, loss is: [1302.0266]epoch: 137, batch: 0, loss is: [1279.0824]epoch: 138, batch: 0, loss is: [1313.5026]epoch: 139, batch: 0, loss is: [1317.8335]epoch: 140, batch: 0, loss is: [1325.1211]登录后复制
登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制
val_SSIM: 0.5129117285623543,Best_SSIM:0.5709971328311436epoch: 141, batch: 0, loss is: [1307.1959]epoch: 142, batch: 0, loss is: [1312.2686]epoch: 143, batch: 0, loss is: [1320.1404]epoch: 144, batch: 0, loss is: [1326.3783]epoch: 145, batch: 0, loss is: [1308.4757]epoch: 146, batch: 0, loss is: [1318.8088]epoch: 147, batch: 0, loss is: [1297.8518]epoch: 148, batch: 0, loss is: [1296.301]epoch: 149, batch: 0, loss is: [1301.2318]epoch: 150, batch: 0, loss is: [1290.0143]登录后复制
登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制
val_SSIM: 0.4650640222375466,Best_SSIM:0.5709971328311436epoch: 151, batch: 0, loss is: [1320.3531]epoch: 152, batch: 0, loss is: [1311.9688]epoch: 153, batch: 0, loss is: [1302.6729]epoch: 154, batch: 0, loss is: [1302.4635]epoch: 155, batch: 0, loss is: [1286.9762]epoch: 156, batch: 0, loss is: [1284.86]epoch: 157, batch: 0, loss is: [1290.937]epoch: 158, batch: 0, loss is: [1274.3252]epoch: 159, batch: 0, loss is: [1280.6571]epoch: 160, batch: 0, loss is: [1286.4685]登录后复制
登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制
val_SSIM: 0.4561319579342975,Best_SSIM:0.5709971328311436epoch: 161, batch: 0, loss is: [1270.9604]epoch: 162, batch: 0, loss is: [1287.5771]epoch: 163, batch: 0, loss is: [1269.8563]epoch: 164, batch: 0, loss is: [1286.9226]epoch: 165, batch: 0, loss is: [1272.0933]epoch: 166, batch: 0, loss is: [1274.8392]epoch: 167, batch: 0, loss is: [1272.4178]epoch: 168, batch: 0, loss is: [1266.7671]epoch: 169, batch: 0, loss is: [1282.4298]epoch: 170, batch: 0, loss is: [1247.015]登录后复制
登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制
val_SSIM: 0.49646587443554935,Best_SSIM:0.5709971328311436epoch: 171, batch: 0, loss is: [1250.8077]epoch: 172, batch: 0, loss is: [1287.3835]epoch: 173, batch: 0, loss is: [1248.3782]epoch: 174, batch: 0, loss is: [1249.7322]epoch: 175, batch: 0, loss is: [1273.4828]epoch: 176, batch: 0, loss is: [1253.0632]epoch: 177, batch: 0, loss is: [1281.6831]epoch: 178, batch: 0, loss is: [1280.6669]epoch: 179, batch: 0, loss is: [1245.0092]epoch: 180, batch: 0, loss is: [1257.4398]登录后复制
登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制
val_SSIM: 0.46512517332255776,Best_SSIM:0.5709971328311436epoch: 181, batch: 0, loss is: [1242.4584]epoch: 182, batch: 0, loss is: [1254.164]epoch: 183, batch: 0, loss is: [1238.1926]epoch: 184, batch: 0, loss is: [1243.1198]epoch: 185, batch: 0, loss is: [1248.0677]epoch: 186, batch: 0, loss is: [1240.6064]epoch: 187, batch: 0, loss is: [1252.3843]epoch: 188, batch: 0, loss is: [1230.179]epoch: 189, batch: 0, loss is: [1237.1627]epoch: 190, batch: 0, loss is: [1232.43]登录后复制
登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制
val_SSIM: 0.4939679476601408,Best_SSIM:0.5709971328311436epoch: 191, batch: 0, loss is: [1245.5471]epoch: 192, batch: 0, loss is: [1255.1567]epoch: 193, batch: 0, loss is: [1250.8704]epoch: 194, batch: 0, loss is: [1223.4425]epoch: 195, batch: 0, loss is: [1224.8658]epoch: 196, batch: 0, loss is: [1230.7142]epoch: 197, batch: 0, loss is: [1229.7573]epoch: 198, batch: 0, loss is: [1235.9465]epoch: 199, batch: 0, loss is: [1225.0635]登录后复制
相关阅读
MORE
+- Excel动态数组全支持 跨表计算永久免授权 07-23 office2019表格行高自适应设置 wps文字表格多行同时修改 07-23
- Word语音输入转文字 会议记录实时生成纯净版 07-23 如何通过夸克AI大模型写爆款文案 夸克AI大模型助力广告转化变现 07-23
- 解读AI语言转视频生成算法背后的逻辑与创意能力 07-23 手机版wpsoffice如何插入图片 手机版wpsoffice图片添加与编辑技巧 07-23
- excel表格行高批量修改 word2016表格列宽精确到毫米设置 07-23 诺基亚手机如何进行出厂设置恢复?_安卓系统重置完整指南 07-23
- 剪映怎么给改变音调-剪映给改变音调的方法 07-23 剪映怎么给视频录音-剪映给视频录音的方法 07-23
- 如何将豆包AI接入企业办公系统 豆包AI企业级集成应用指南 07-23 荐片如何查看影视资讯 荐片行业动态浏览方式 07-23
- axurerp怎么添加音乐?axurerp添加音乐的操作步骤 07-23 荐片怎么下载高清电影 荐片APP官方资源下载教程 07-23
- 如何用豆包AI写爆款短视频脚本 豆包AI文案优化实操方法 07-23 Deepseek 满血版携手 Reedsy,创作引人入胜的小说故事 07-23
- mac系统怎么装双系统 07-23 win10电脑无法识别苹果手机_win10连接iPhone失败的解决方法 07-23