您好,欢迎来到游6网!

当前位置:首页 > AI > 基于分割网络Unet生成虚拟图像

基于分割网络Unet生成虚拟图像

发布时间:2025-07-22    编辑:游乐网

本文基于Unet分割网络,利用49例头部磁共振T1、T2数据,通过配准使二者解剖位置一致,转换数据格式并裁剪窗宽窗位,构建数据集。以T1为输入、T2为标签训练Unet进行回归,用SSIM评估,经200轮训练,最佳SSIM达0.571,实现由T1生成虚拟T2图像。

基于分割网络unet生成虚拟图像 - 游乐网

基于分割网络Unet生成虚拟图像

这个想法是基于

[1]高留刚, 李春迎, 陆正大,等. 基于卷积神经网络生成虚拟平扫CT图像[J]. 中国医学影像技术, 2024, 38(3):5.

【1】文章使用Unet对增强CT数据进行训练,最终预测生成对应的虚拟平扫CT图像,达到只需要对患者扫描一次CT即可,避免患者接受过多的放射辐射。基于分割网络Unet生成虚拟图像 - 游乐网

【2】因为本项目没有对应的CT数据,刚好有一个T1、T2磁共振头部公开数据,先磁共振数据进行配准,然后输入T1模态的数据到Unet中然后生成对应的T2模态数据。基于分割网络Unet生成虚拟图像 - 游乐网

1. 数据

数量:49例

模态和部位:磁共振的T1和T2头部数据 基于分割网络Unet生成虚拟图像 - 游乐网

In [ ]
#解压数据!unzip -o /home/aistudio/data/data146796/mydata.zip -d /home/aistudio/work
登录后复制In [ ]
#antspyx 是一个配准工具包,SImpleITK处理医学数据!pip install antspyx SimpleITK
登录后复制In [ ]
import osimport antsimport SimpleITK as sitkfrom tqdm import tqdmimport numpy as npimport randomimport matplotlib.pyplot as pltimport paddleimport cv2
登录后复制

2. 对数据进行配准

项是利用 Unet对像素数值进行回归预测。所以在进入网路之前,除了像素值的尺寸不同之外,原资料与标记资料的解剖学位置应当是相同的。因此,必须将原始资料与标签资料进行匹配,使二者重新整合。比如下面这张图片,T1有256层,T2有136层,显然是解剖位置不对,然后经过配准后的T2有256层,和T1层的解剖学位置一模一样。对齐后的数据可以作为标记输入到网络中。基于分割网络Unet生成虚拟图像 - 游乐网

In [ ]
#因为配准花费的时间太久太久了,本项目的数据已经包含好了配准后的数据。#因此不用运行此代码path  = '/home/aistudio/work/mydata/IXI-T1'for f in tqdm(os.listdir(path)):    f_path = os.path.join(path,f)    m_path = os.path.join('/home/aistudio/work/mydata/IXI-T2',f.replace('T1','T2'))    f_img = ants.image_read(f_path)    m_img = ants.image_read(m_path)    mytx = ants.registration(fixed=f_img, moving=m_img, type_of_transform='SyN')    # 将形变场作用于moving图像,得到配准后的图像    warped_img = ants.apply_transforms(fixed=f_img, moving=m_img, transformlist=mytx['fwdtransforms'],                                    interpolator="linear")    # 将配准后图像的direction/origin/spacing和原图保持一致    warped_img.set_direction(f_img.direction)    warped_img.set_origin(f_img.origin)    warped_img.set_spacing(f_img.spacing)    img_name = '/home/aistudio/work/mydata/IXI-T2-warped/'+ f.replace('T1','Warped')    # ants.image_write(warped_img, img_name)print("End")
登录后复制

3. 转换数据形式

原始数据格式是NIFIT,是属于医疗数据格式的一种。把NIFIT数据转换成numpy,并对窗宽窗位进行裁剪到0~255。并生成txt文档,用作构建DataSet使用。

In [ ]
random.seed(2024)save_path = '/home/aistudio/work/npdata'save_origin_path = "/home/aistudio/work/npdata/origin/"save_label_path =  "/home/aistudio/work/npdata/label/"if not os.path.exists(save_path):    os.mkdir(save_path)    os.mkdir(save_origin_path)    os.mkdir(save_label_path)origin_data = '/home/aistudio/work/mydata/IXI-T1'f_list = os.listdir(origin_data)random.shuffle(f_list)split = int(len(f_list)*0.9)t_f_list = f_list[:split]v_f_list = f_list[split:]def gen_txt(f_list,name):    txt = open( os.path.join(save_path,name),'w')    for f in f_list:        if '.ipynb_checkpoints' in f:            continue        f_path = os.path.join(origin_data,f)        tag_path = os.path.join(origin_data.replace('T1','T2-warped'),f.replace('T1','Warped'))        f_sitkData = sitk.ReadImage(f_path)        tag_sitkData = sitk.ReadImage(tag_path)        f_npData = sitk.GetArrayFromImage(f_sitkData)        tag_npData = sitk.GetArrayFromImage(tag_sitkData)        f.split('-')[0]        for i in range(100,200):            f_slice = np.rot90(f_npData[:,i,:],-1)            tag_slice = np.rot90(tag_npData[:,i,:],-1)            f_slice = (f_slice - 0) / ((835 - 0) / 255)            np.clip(f_slice, 0, 255, out=f_slice)            tag_slice = (tag_slice - 0) / ((626 - 0) / 255)            np.clip(tag_slice, 0, 255, out=tag_slice)                        f_save_path = save_origin_path+f.split('-')[0]+'_'+str(i) +'.npy'            tag_save_path = save_label_path+f.split('-')[0]+'_'+str(i) +'.npy'            np.save(f_save_path,f_slice)            np.save(tag_save_path,tag_slice)            txt.write(f_save_path + ' ' + tag_save_path+ '\n')    txt.close()gen_txt(t_f_list,name='train.txt')gen_txt(v_f_list,name='val.txt')print('完成')
登录后复制

4. 构建Dataset

数据增强只采用 缩放到256x256。

In [4]
from paddle.io import Dataset, DataLoaderfrom paddle.vision.transforms import Resizeclass MyDataset(Dataset):    def __init__(self, data_dir, txt_path, transform=None):        super(MyDataset, self).__init__()        self.data_list = []        with open(txt_path,encoding='utf-8') as f:            for line in f.readlines():                image_path, label_path = line.split(' ')                image_path = image_path.strip()                label_path = label_path.strip()                image_path = os.path.join(data_dir, image_path)                label_path = os.path.join(data_dir,label_path)                self.data_list.append([image_path, label_path])        self.transform = transform    def __getitem__(self, index):        image_path, label_path = self.data_list[index]        image = np.load(image_path)        label = np.load(label_path)        if self.transform is not None:            image = self.transform(image)            label = self.transform(label)                image = image[np.newaxis,:].astype('float32')        label = label[np.newaxis,:].astype('float32')        return image, label    def __len__(self):        return len(self.data_list)BatchSize = 24transform = Resize(size=(256,256))t_dataset = MyDataset('/home/aistudio','work/npdata/train.txt',transform=transform)v_dataset = MyDataset('/home/aistudio','work/npdata/val.txt',transform=transform)train_loader = DataLoader(t_dataset,batch_size=BatchSize)  val_loader = DataLoader(v_dataset,batch_size=BatchSize)
登录后复制

5. 评价指标 SSIM

SSIM (Structure Similarity Index Measure) 结构衡量指标

结构相似指标可以衡量图片的失真程度,也可以衡量两张图片的相似程度,SSIM指标感知模型,即更符合人眼的直观感受。SSIM 主要考量图片的三个关键特征:亮度(Luminance), 对比度(Contrast), 结构 (Structure)。SSIM取值约接近1,两张图片的相似度约接近。两张图片一模一样,SSIM=1

参考文章 https://zhuanlan.zhihu.com/p/399215180

In [6]
def ssim(img1, img2):  C1 = (0.01 * 255)**2  C2 = (0.03 * 255)**2  img1 = img1.astype(np.float64)  img2 = img2.astype(np.float64)  kernel = cv2.getGaussianKernel(11, 1.5)  window = np.outer(kernel, kernel.transpose())  mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid  mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]  mu1_sq = mu1**2  mu2_sq = mu2**2  mu1_mu2 = mu1 * mu2  sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq  sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq  sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2  ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *                              (sigma1_sq + sigma2_sq + C2))  return ssim_map.mean()def calculate_ssim(img1, img2):  if not img1.shape == img2.shape:    raise ValueError('Input images must have the same dimensions.')  if img1.ndim == 2:    return ssim(img1, img2)  elif img1.ndim == 3:    if img1.shape[2] == 3:      ssims = []      for i in range(3):        ssims.append(ssim(img1, img2))      return np.array(ssims).mean()    elif img1.shape[2] == 1:      return ssim(np.squeeze(img1), np.squeeze(img2))  else:    raise ValueError('Wrong input image dimensions.')for data in t_dataset:    img1,img2 = data    plt.figure(figsize=(10,6))    plt.subplot(1,2,1)    plt.imshow(np.squeeze(img1),'gray')    plt.title("T1 mode")    plt.subplot(1,2,2)    plt.imshow(np.squeeze(img2),'gray')    plt.title("T2 mode")    print(f'SSIM:{calculate_ssim(np.squeeze(img1),np.squeeze(img2))}')    break
登录后复制
SSIM:0.4927141870957079
登录后复制
登录后复制

6. 导入Unet模型,开始训练

Unet网络是一种语义分割网络,输入原始图像和对应的标签Mask图像到Unet网络中进行分割,最终输出和标签Mask一致的图像。实际也是对像素值进行分类。把原始图像中的像素值进行分类,到底是属于Mask图像中像素值0,还是像素值1等等。这里是使用Unet网络进行回归,因此网络输出的类别是1。基于分割网络Unet生成虚拟图像 - 游乐网

In [8]
from model.unet import UNetimg = paddle.rand([2, 1, 256, 256])model = UNet()out = model(paddle.rand([2, 1, 256, 256]))print(out.shape)
登录后复制
[2, 1, 256, 256]
登录后复制In [9]
def evaluation(model,val_dataset):    """验证"""    model.eval()    ssims = []    for data in val_dataset:        image,label = data        image = image[np.newaxis,:].astype('float32')        image = paddle.to_tensor(image)        pre = model(image).numpy()        pre = np.squeeze(pre).astype('int32')        ssims.append(calculate_ssim(np.squeeze(label.astype('int32')),pre))    return np.array(ssims).mean()def train(model,epochs):    if not os.path.exists('/home/aistudio/save_model'):        os.mkdir('/home/aistudio/save_model')    steps = int(len(t_dataset)/BatchSize) * epochs    best_ssim = 0 #记录最优的ssim得分    model.train()    scheduler = paddle.optimizer.lr.PolynomialDecay(learning_rate=0.05, decay_steps=steps, verbose=False)    opt = paddle.optimizer.Adam(learning_rate=scheduler, parameters=model.parameters())        for epoch_id in range(epochs):        for batch_id, data in enumerate(train_loader()):            images, labels = data            images = paddle.to_tensor(images)            labels = paddle.to_tensor(labels)            predicts = model(images)            mse_loss = paddle.nn.MSELoss()            l1_loss = paddle.nn.L1Loss()            loss = mse_loss(predicts, labels)+l1_loss(predicts,labels)            if batch_id % 200 == 0:                print("epoch: {}, batch: {}, loss is: {}".format(epoch_id, batch_id, loss.numpy()))            loss.backward()            opt.step()            opt.clear_grad()        #训练过程中,保存模型参数        if epoch_id % 10 == 0:            paddle.save(model.state_dict(), '/home/aistudio/save_model/'+str(epoch_id)+'model.pdparams')                        model.eval()            #训练过程中,预览效果,输入T1图片,预测t2图片            data = t_dataset[150]            img,label = data            input = img[np.newaxis,:].astype('float32')            input = paddle.to_tensor(input)            pre = model(input).numpy()            pre = np.squeeze(pre)            plt.figure(figsize=(12,6))            plt.subplot(1,3,1)            plt.imshow(np.squeeze(img),'gray')            plt.title("input: T1 mode")            plt.subplot(1,3,2)            plt.imshow(np.squeeze(label),'gray')            plt.title("target:T2 mode")            plt.subplot(1,3,3)            plt.imshow(pre,'gray')            plt.title("pre: T2 mode")            plt.show()            v_ssim_mean = evaluation(model, v_dataset)            if v_ssim_mean > best_ssim:                paddle.save(model.state_dict(), '/home/aistudio/save_model/best_model.pdparams')                best_ssim = v_ssim_mean            model.train()            print(f'val_SSIM: {v_ssim_mean},Best_SSIM:{best_ssim}')       #启动训练过程train(model,epochs= 200)
登录后复制
epoch: 0, batch: 0, loss is: [7316.7188]
登录后复制
登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制
val_SSIM: 0.39978080604275146,Best_SSIM:0.39978080604275146epoch: 1, batch: 0, loss is: [2628.9192]epoch: 2, batch: 0, loss is: [2724.6853]epoch: 3, batch: 0, loss is: [2688.8508]epoch: 4, batch: 0, loss is: [2686.88]epoch: 5, batch: 0, loss is: [2608.186]epoch: 6, batch: 0, loss is: [2520.5952]epoch: 7, batch: 0, loss is: [2692.3694]epoch: 8, batch: 0, loss is: [2702.1028]epoch: 9, batch: 0, loss is: [2628.6016]epoch: 10, batch: 0, loss is: [2485.4382]
登录后复制
登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制
val_SSIM: 0.4802982366278921,Best_SSIM:0.4802982366278921epoch: 11, batch: 0, loss is: [2507.683]epoch: 12, batch: 0, loss is: [2434.3452]epoch: 13, batch: 0, loss is: [2408.262]epoch: 14, batch: 0, loss is: [2332.7097]epoch: 15, batch: 0, loss is: [2270.0247]epoch: 16, batch: 0, loss is: [2179.795]epoch: 17, batch: 0, loss is: [2138.3933]epoch: 18, batch: 0, loss is: [2093.4106]epoch: 19, batch: 0, loss is: [1887.1506]epoch: 20, batch: 0, loss is: [2024.5569]
登录后复制
登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制
val_SSIM: 0.49954443953370115,Best_SSIM:0.49954443953370115epoch: 21, batch: 0, loss is: [1973.8619]epoch: 22, batch: 0, loss is: [1956.6097]epoch: 23, batch: 0, loss is: [1909.3981]epoch: 24, batch: 0, loss is: [1875.7285]epoch: 25, batch: 0, loss is: [1837.553]epoch: 26, batch: 0, loss is: [1812.5168]epoch: 27, batch: 0, loss is: [1785.5492]epoch: 28, batch: 0, loss is: [1774.7295]epoch: 29, batch: 0, loss is: [1752.758]epoch: 30, batch: 0, loss is: [1756.8203]
登录后复制
登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制
val_SSIM: 0.5426780015544808,Best_SSIM:0.5426780015544808epoch: 31, batch: 0, loss is: [1735.7894]epoch: 32, batch: 0, loss is: [1827.0814]epoch: 33, batch: 0, loss is: [1753.9219]epoch: 34, batch: 0, loss is: [1779.7365]epoch: 35, batch: 0, loss is: [1752.4994]epoch: 36, batch: 0, loss is: [1747.4668]epoch: 37, batch: 0, loss is: [1735.7844]epoch: 38, batch: 0, loss is: [1769.8733]epoch: 39, batch: 0, loss is: [1759.1631]epoch: 40, batch: 0, loss is: [1630.8364]
登录后复制
登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制
val_SSIM: 0.4373114577520071,Best_SSIM:0.5426780015544808epoch: 41, batch: 0, loss is: [1611.3628]epoch: 42, batch: 0, loss is: [1715.6615]epoch: 43, batch: 0, loss is: [1763.4269]epoch: 44, batch: 0, loss is: [1737.9359]epoch: 45, batch: 0, loss is: [1772.5739]epoch: 46, batch: 0, loss is: [1738.1847]epoch: 47, batch: 0, loss is: [1775.006]epoch: 48, batch: 0, loss is: [1911.8531]epoch: 49, batch: 0, loss is: [2033.4453]epoch: 50, batch: 0, loss is: [1987.3456]
登录后复制
登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制
val_SSIM: 0.5579299673856584,Best_SSIM:0.5579299673856584epoch: 51, batch: 0, loss is: [1836.5175]epoch: 52, batch: 0, loss is: [1861.1411]epoch: 53, batch: 0, loss is: [1845.1718]epoch: 54, batch: 0, loss is: [1740.5963]epoch: 55, batch: 0, loss is: [1660.3125]epoch: 56, batch: 0, loss is: [1726.9702]epoch: 57, batch: 0, loss is: [1635.8535]epoch: 58, batch: 0, loss is: [1610.6799]epoch: 59, batch: 0, loss is: [1568.5394]epoch: 60, batch: 0, loss is: [1617.876]
登录后复制
登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制
val_SSIM: 0.5634165131362056,Best_SSIM:0.5634165131362056epoch: 61, batch: 0, loss is: [1561.1827]epoch: 62, batch: 0, loss is: [1597.7261]epoch: 63, batch: 0, loss is: [1525.599]epoch: 64, batch: 0, loss is: [1548.1874]epoch: 65, batch: 0, loss is: [1488.4364]epoch: 66, batch: 0, loss is: [1513.0366]epoch: 67, batch: 0, loss is: [1505.5546]epoch: 68, batch: 0, loss is: [1516.5098]epoch: 69, batch: 0, loss is: [1467.4851]epoch: 70, batch: 0, loss is: [1585.8317]
登录后复制
登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制
val_SSIM: 0.5709971328311436,Best_SSIM:0.5709971328311436epoch: 71, batch: 0, loss is: [1457.6887]epoch: 72, batch: 0, loss is: [1467.6174]epoch: 73, batch: 0, loss is: [1471.8882]epoch: 74, batch: 0, loss is: [1459.0536]epoch: 75, batch: 0, loss is: [1458.9404]epoch: 76, batch: 0, loss is: [1634.24]epoch: 77, batch: 0, loss is: [1650.2292]epoch: 78, batch: 0, loss is: [1437.5302]epoch: 79, batch: 0, loss is: [1421.7593]epoch: 80, batch: 0, loss is: [1413.1609]
登录后复制
登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制
val_SSIM: 0.5701560896501561,Best_SSIM:0.5709971328311436epoch: 81, batch: 0, loss is: [1409.3071]epoch: 82, batch: 0, loss is: [1404.0553]epoch: 83, batch: 0, loss is: [1420.5449]epoch: 84, batch: 0, loss is: [1398.2864]epoch: 85, batch: 0, loss is: [1488.5781]epoch: 86, batch: 0, loss is: [1401.356]epoch: 87, batch: 0, loss is: [1410.7175]epoch: 88, batch: 0, loss is: [1500.6272]epoch: 89, batch: 0, loss is: [1416.3497]epoch: 90, batch: 0, loss is: [1380.4263]
登录后复制
登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制
val_SSIM: 0.5465621052241267,Best_SSIM:0.5709971328311436epoch: 91, batch: 0, loss is: [1372.7605]epoch: 92, batch: 0, loss is: [1367.5848]epoch: 93, batch: 0, loss is: [1376.7378]epoch: 94, batch: 0, loss is: [1370.2089]epoch: 95, batch: 0, loss is: [1365.8433]epoch: 96, batch: 0, loss is: [1369.1512]epoch: 97, batch: 0, loss is: [1369.3212]epoch: 98, batch: 0, loss is: [1404.3115]epoch: 99, batch: 0, loss is: [1354.4286]epoch: 100, batch: 0, loss is: [1382.9532]
登录后复制
登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制
val_SSIM: 0.5378666148453135,Best_SSIM:0.5709971328311436epoch: 101, batch: 0, loss is: [1387.7471]epoch: 102, batch: 0, loss is: [1424.3396]epoch: 103, batch: 0, loss is: [1349.6024]epoch: 104, batch: 0, loss is: [1366.5181]epoch: 105, batch: 0, loss is: [1352.3512]epoch: 106, batch: 0, loss is: [1353.1865]epoch: 107, batch: 0, loss is: [1352.0631]epoch: 108, batch: 0, loss is: [1343.2163]epoch: 109, batch: 0, loss is: [1345.3413]epoch: 110, batch: 0, loss is: [1346.6847]
登录后复制
登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制
val_SSIM: 0.5586893791021966,Best_SSIM:0.5709971328311436epoch: 111, batch: 0, loss is: [1343.9454]epoch: 112, batch: 0, loss is: [1349.0774]epoch: 113, batch: 0, loss is: [1337.5864]epoch: 114, batch: 0, loss is: [1429.8538]epoch: 115, batch: 0, loss is: [1349.8104]epoch: 116, batch: 0, loss is: [1335.1368]epoch: 117, batch: 0, loss is: [1337.9221]epoch: 118, batch: 0, loss is: [1352.1951]epoch: 119, batch: 0, loss is: [1347.4542]epoch: 120, batch: 0, loss is: [1336.236]
登录后复制
登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制
val_SSIM: 0.4977443843057142,Best_SSIM:0.5709971328311436epoch: 121, batch: 0, loss is: [1341.1677]epoch: 122, batch: 0, loss is: [1325.7648]epoch: 123, batch: 0, loss is: [1322.5]epoch: 124, batch: 0, loss is: [1322.8683]epoch: 125, batch: 0, loss is: [1319.6675]epoch: 126, batch: 0, loss is: [1319.3303]epoch: 127, batch: 0, loss is: [1320.0753]epoch: 128, batch: 0, loss is: [1316.222]epoch: 129, batch: 0, loss is: [1336.7915]epoch: 130, batch: 0, loss is: [1321.2736]
登录后复制
登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制
val_SSIM: 0.47030362428033146,Best_SSIM:0.5709971328311436epoch: 131, batch: 0, loss is: [1339.2891]epoch: 132, batch: 0, loss is: [1318.2183]epoch: 133, batch: 0, loss is: [1325.5737]epoch: 134, batch: 0, loss is: [1308.886]epoch: 135, batch: 0, loss is: [1298.8752]epoch: 136, batch: 0, loss is: [1302.0266]epoch: 137, batch: 0, loss is: [1279.0824]epoch: 138, batch: 0, loss is: [1313.5026]epoch: 139, batch: 0, loss is: [1317.8335]epoch: 140, batch: 0, loss is: [1325.1211]
登录后复制
登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制
val_SSIM: 0.5129117285623543,Best_SSIM:0.5709971328311436epoch: 141, batch: 0, loss is: [1307.1959]epoch: 142, batch: 0, loss is: [1312.2686]epoch: 143, batch: 0, loss is: [1320.1404]epoch: 144, batch: 0, loss is: [1326.3783]epoch: 145, batch: 0, loss is: [1308.4757]epoch: 146, batch: 0, loss is: [1318.8088]epoch: 147, batch: 0, loss is: [1297.8518]epoch: 148, batch: 0, loss is: [1296.301]epoch: 149, batch: 0, loss is: [1301.2318]epoch: 150, batch: 0, loss is: [1290.0143]
登录后复制
登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制
val_SSIM: 0.4650640222375466,Best_SSIM:0.5709971328311436epoch: 151, batch: 0, loss is: [1320.3531]epoch: 152, batch: 0, loss is: [1311.9688]epoch: 153, batch: 0, loss is: [1302.6729]epoch: 154, batch: 0, loss is: [1302.4635]epoch: 155, batch: 0, loss is: [1286.9762]epoch: 156, batch: 0, loss is: [1284.86]epoch: 157, batch: 0, loss is: [1290.937]epoch: 158, batch: 0, loss is: [1274.3252]epoch: 159, batch: 0, loss is: [1280.6571]epoch: 160, batch: 0, loss is: [1286.4685]
登录后复制
登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制
val_SSIM: 0.4561319579342975,Best_SSIM:0.5709971328311436epoch: 161, batch: 0, loss is: [1270.9604]epoch: 162, batch: 0, loss is: [1287.5771]epoch: 163, batch: 0, loss is: [1269.8563]epoch: 164, batch: 0, loss is: [1286.9226]epoch: 165, batch: 0, loss is: [1272.0933]epoch: 166, batch: 0, loss is: [1274.8392]epoch: 167, batch: 0, loss is: [1272.4178]epoch: 168, batch: 0, loss is: [1266.7671]epoch: 169, batch: 0, loss is: [1282.4298]epoch: 170, batch: 0, loss is: [1247.015]
登录后复制
登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制
val_SSIM: 0.49646587443554935,Best_SSIM:0.5709971328311436epoch: 171, batch: 0, loss is: [1250.8077]epoch: 172, batch: 0, loss is: [1287.3835]epoch: 173, batch: 0, loss is: [1248.3782]epoch: 174, batch: 0, loss is: [1249.7322]epoch: 175, batch: 0, loss is: [1273.4828]epoch: 176, batch: 0, loss is: [1253.0632]epoch: 177, batch: 0, loss is: [1281.6831]epoch: 178, batch: 0, loss is: [1280.6669]epoch: 179, batch: 0, loss is: [1245.0092]epoch: 180, batch: 0, loss is: [1257.4398]
登录后复制
登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制
val_SSIM: 0.46512517332255776,Best_SSIM:0.5709971328311436epoch: 181, batch: 0, loss is: [1242.4584]epoch: 182, batch: 0, loss is: [1254.164]epoch: 183, batch: 0, loss is: [1238.1926]epoch: 184, batch: 0, loss is: [1243.1198]epoch: 185, batch: 0, loss is: [1248.0677]epoch: 186, batch: 0, loss is: [1240.6064]epoch: 187, batch: 0, loss is: [1252.3843]epoch: 188, batch: 0, loss is: [1230.179]epoch: 189, batch: 0, loss is: [1237.1627]epoch: 190, batch: 0, loss is: [1232.43]
登录后复制
登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制登录后复制
val_SSIM: 0.4939679476601408,Best_SSIM:0.5709971328311436epoch: 191, batch: 0, loss is: [1245.5471]epoch: 192, batch: 0, loss is: [1255.1567]epoch: 193, batch: 0, loss is: [1250.8704]epoch: 194, batch: 0, loss is: [1223.4425]epoch: 195, batch: 0, loss is: [1224.8658]epoch: 196, batch: 0, loss is: [1230.7142]epoch: 197, batch: 0, loss is: [1229.7573]epoch: 198, batch: 0, loss is: [1235.9465]epoch: 199, batch: 0, loss is: [1225.0635]
登录后复制

热门合集

MORE

+

MORE

+

变态游戏推荐

MORE

+

热门游戏推荐

MORE

+

关于我们  |  游戏下载排行榜  |  专题合集  |  端游游戏  |  手机游戏  |  联系方式: youleyoucom@outlook.com

Copyright 2013-2019 www.youleyou.com    湘公网安备 43070202000716号

声明:游6网为非赢利性网站 不接受任何赞助和广告 湘ICP备2023003002号-9