首页
AI
【飞桨学习赛:遥感影像地块分割】22年7月第一名方案

【飞桨学习赛:遥感影像地块分割】22年7月第一名方案

热心网友
转载
2025-07-22
来源:https://www.php.cn/faq/1421540.html

本文介绍飞桨遥感影像地块分割赛题22年7月第一名方案(66分)。基于PaddleSeg套件,采用有效数据增强,对类别3难样本重采样,改进SegFormer的Decoder(转置卷积替代双线性插值),用混合损失函数与TTA预测,通过数据与模型优化提升分割精度。

【飞桨学习赛:遥感影像地块分割】22年7月第一名方案 - 游乐网

飞桨学习赛:遥感影像地块分割——22年7月第一名:66分方案

比赛链接:飞桨学习赛:遥感影像地块分割

赛题介绍

本赛题由 2020 CCF BDCI 遥感影像地块分割 初赛赛题改编而来。遥感影像地块分割, 旨在对遥感影像进行像素级内容解析,对遥感影像中感兴趣的类别进行提取和分类,在城乡规划、防汛救灾等领域具有很高的实用价值,在工业界也受到了广泛关注。现有的遥感影像地块分割数据处理方法局限于特定的场景和特定的数据来源,且精度无法满足需求。因此在实际应用中,仍然大量依赖于人工处理,需要消耗大量的人力、物力、财力。本赛题旨在衡量遥感影像地块分割模型在多个类别(如建筑、道路、林地等)上的效果,利用人工智能技术,对多来源、多场景的异构遥感影像数据进行充分挖掘,打造高效、实用的算法,提高遥感影像的分析提取能力。 赛题任务 本赛题旨在对遥感影像进行像素级内容解析,并对遥感影像中感兴趣的类别进行提取和分类,以衡量遥感影像地块分割模型在多个类别(如建筑、道路、林地等)上的效果。

数据说明

本赛题提供了多个地区已脱敏的遥感影像数据,各参赛选手可以基于这些数据构建自己的地块分割模型。

【飞桨学习赛:遥感影像地块分割】22年7月第一名方案 - 游乐网        

其中有效的标签被定义为0,1,2,3。255像素值区域为未标记区域。

比赛难点

本比赛实质上还是一个语义分割的任务,只是相对于在遥感影像上的迁移。

个人认为本次比赛的难点在于类与类之间的分割界面不容易区分,对于模型细粒度的分割提出了要求。

而且对于后处理部分来说(分割任务涨点比较多的办法)由于类与类之间界限比较模糊,加上类别形状的不规则,难以找到有效的后处理办法涨分。

本项目亮点

整体基于PaddleSeg套件进行完成,易于上手改进,学习。

有效的数据增强方法

构建类别3难与训练的有效重采样办法,一定程度上解决类别3难以学习的问题。

构建基于SegFormer改进的Decoder,一定程度上解决模型细粒度不够的问题。

PaddleSeg套件开发

本项目使用的模型及数据集处理方法,均为在PaddleSeg原有的基础上进行改进,主要的改进部分有数据集加载处理及模型部分结构更改部分。

对于数据集的处理,主要从paddleseg/datasets/dataset.py更改

对于模型的选择及更改,则主要从paddleseg/models/segformer.py更改

数据增强部分

本项目从已有开源项目,和自己的消融实验,主要确立使用数据增强方法如下:

上述方法都基于未更改模型和数据集处理的得分,且都使用了TTA的预测方法

数据集处理部分

这里的数据集处理,主要是针对预测结果进行分析,并且获得。

从几次训练结果分析,可以知道模型对于类别3的学习,存在一定的困难,但其实如果从面积的角度去分析的话,三个类别的分布是相当的,但鉴于此,我选择了在训练过程中,对类别3单独进行重采样的处理方法

【飞桨学习赛:遥感影像地块分割】22年7月第一名方案 - 游乐网        

具体的代码在myconfig里的mydataset.py文件里。大致的思路就是去构建含有3类别的数据,在训练中以一定的概率对这些数据进行采样。相关代码如下,其实也很简单,就是一定概率下,这次的采样数据从含有类别3的数据里找。

            if np.random.random()登录后复制

       

这里的采样概率,采用的是以10%的概率对每次采样时,从含类别3中的数据中进行采样,当然这里也可以以递增的方法进行采样,但要改的代码比较多且最后都结果并没有以稳定10%概率采样效果好。

SegFormer模型改进

SegFormer是一款基于Transformer构建的具有简单结构的语义分割网络。其基础网络结构如下图所示。

【飞桨学习赛:遥感影像地块分割】22年7月第一名方案 - 游乐网        

这里重点关注模型的Decodr部分。原基础模型的Decoder部分,简单的说就是一个MLP来将不同特种层输出的特征进行融合,然后经过一个MLP再进行上采样。

这里给出两个改进的思路:

对MLP特征融合进行改进

具体可以参考像FPN和PAN结构的金字塔特征融合,来对特征进行充分挖掘。

对上采样部分进行改进

在原基础SegFormer结构里,上采样部分,用的是最简单的双线性插值的方法。在本项目中,针对上采样方法进行改进,旨在增强模型的细节还原能力。具体来说,即将上采样的部分更换成具有学习能力的转置卷积,来提升模型对细节的还原。

【飞桨学习赛:遥感影像地块分割】22年7月第一名方案 - 游乐网        

具体代码详见myconfig/segformer.py文件。

经过上述两部分操作,得分概览如下。

其他细节

本项目还存在以下一些细节部分

训练时采用混合Loss:分别为0.8:CrossEntropyLoss和0.2:LovaszSoftmaxLoss

预测时采用了TTA方法,分别有垂直翻转和0.75,1.0和1.25倍尺寸的多尺度预测。

下面则是本项目的训练过程

代码下载

这里提供了我自己加载在AI studio上的代码

In [8]
# !git clone https://github.com/lzzzzzm/AI-Studio-LrCompetition-Segmentation-of-sensing-imageblock!unzip -q data/data162694/PaddleSeg-SenseingBlock.zip -d ./
登录后复制    

数据集处理

In [9]
!unzip -q data/data80164/train_and_label.zip -d ~/data/!unzip -q data/data80164/img_test.zip -d ~/data/
登录后复制    In [10]
import osimport numpy as npdatas = []image_base = 'data/img_train'   # 训练集原图路径annos_base = 'data/lab_train'   # 训练集标签路径# 读取原图文件名ids_ = [v.split('.')[0] for v in os.listdir(image_base)]# 将训练集的图像集和标签路径写入datas中for id_ in ids_:    img_pt0 = os.path.join(image_base, '{}.jpg'.format(id_))    img_pt1 = os.path.join(annos_base, '{}.png'.format(id_))    datas.append((img_pt0.replace('/home/aistudio', ''), img_pt1.replace('/home/aistudio', '')))    if os.path.exists(img_pt0) and os.path.exists(img_pt1):        pass    else:        raise "path invalid!"# 打印datas的长度和具体存储例子print('total:', len(datas))print(datas[0][0])print(datas[0][1])print(datas[10][:])
登录后复制        
total: 66652data/img_train/T016293.jpgdata/lab_train/T016293.png('data/img_train/T032581.jpg', 'data/lab_train/T032581.png')
登录后复制        In [11]
import numpy as np# 四类标签,这里用处不大,比赛评测是以0、1、2、3类来对比评测的labels = ['建筑', '耕地', '林地',  '其他']# 将labels写入标签文件with open('labels.txt', 'w') as f:    for v in labels:        f.write(v+'\n')# 随机打乱datasnp.random.seed(5)np.random.shuffle(datas)# 验证集与训练集的划分,0.05表示5%为训练集,95%为训练集split_num = int(0.05*len(datas))# 划分训练集和验证集train_data = datas[:-split_num]valid_data = datas[-split_num:]# 写入训练集listwith open('train_list.txt', 'w') as f:    for img, lbl in train_data:        f.write(img + ' ' + lbl + '\n')# 写入验证集listwith open('valid_list.txt', 'w') as f:    for img, lbl in valid_data:        f.write(img + ' ' + lbl + '\n')# 打印训练集和测试集大小print('train:', len(train_data))print('valid:', len(valid_data))
登录后复制        
train: 63320valid: 3332
登录后复制        In [12]
import cv2 as cvimport tqdm# 写入包含类别3的采样样本sample_list = []with open('train_list.txt', 'r') as f:    lines = f.readlines()    for line in tqdm.tqdm(lines):        image_path, label_path = line.split(' ')        label_path = label_path[:-1]        label = cv.imread(label_path, cv.IMREAD_GRAYSCALE)        if label is not None:            if (label==3).any() == True:                sample_list.append(line)f.close()with open('sample.txt', 'w') as f:    for line in sample_list:        f.writelines(line)f.close()
登录后复制        
100%|██████████| 63320/63320 [00:13<00:00, 4559.30it/s]
登录后复制        

模型训练

In [ ]
!python AI-Studio-LrCompetition-Segmentation-of-sensing-imageblock/train.py \    --config AI-Studio-LrCompetition-Segmentation-of-sensing-imageblock/myconfig/segformer-b2-rs.yml \    --use_vdl \    --do_eval \    --num_workers 4 \    --save_interval 10000 \    --save_dir segformer-b2-rs \    --log_iters 2000
登录后复制    

推理预测和生成比赛文件

In [ ]
!python AI-Studio-LrCompetition-Segmentation-of-sensing-imageblock/predict.py \       --config AI-Studio-LrCompetition-Segmentation-of-sensing-imageblock/myconfig/segformer-b2-rs.yml \       --model_path segformer-b2-rs/model.pdparams \       --aug_pred \       --scales 0.75 1.0 1.25 \       --image_path data/img_testA \       --custom_color 0 0 0 1 1 1 2 2 2 3 3 3 \       --save_dir result/SegFormer-B2/
登录后复制    In [ ]
import osimport tqdmimport cv2img_path = "/home/aistudio/result/SegFormer-B2/pseudo_color_prediction"rst_path =  "/home/aistudio/result/SegFormer-B2/result"if not os.path.exists(rst_path):    os.makedirs(rst_path)file_list = os.listdir(img_path)img_list = [os.path.join(img_path, name) for name in file_list]for i,img_file in tqdm.tqdm(enumerate(img_list)):    img = cv2.imread(img_file,cv2.IMREAD_GRAYSCALE)    cv2.imwrite(os.path.join(rst_path,file_list[i]),img)
登录后复制    In [ ]
# 由预测结果生成提交文件!zip -r result.zip result/SegFormer-B2/result
登录后复制    

免责声明

游乐网为非赢利性网站,所展示的游戏/软件/文章内容均来自于互联网或第三方用户上传分享,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系youleyoucom@outlook.com。

同类文章

夸克升级AI助手:阿里“C计划”重构工具矩阵与硬件布局

近期,阿里集团的一系列新动作引发了网络热议,相关消息不仅在国内广泛传播,还引起了外媒的关注。先是彭博社报道称阿里股价上涨,背后似乎有一个旨在挑战字节跳动的“C计划”。紧接着,路透社透露阿里推出了一款

2025-10-24.

网易《逆水寒》手游引入宇树机器人,优化动态捕捉流程

人工智能技术飞速发展,让不少职场人开始担忧自己的工作是否会被机器取代。尤其是近期机器人技术不断突破,AI机器人进入多个行业,既方便了人们的生活,也引发了新一轮的讨论。在这样的背景下,国内知名互联网企

2025-10-24.

85岁心理学家波佩尔:60年科研思考不息,活力不减的秘诀

在德国慕尼黑大学的校园里,一位银发学者仍保持着每日穿梭于实验室与办公室的习惯。这位85岁的心理学教授恩斯特·波佩尔,用六十余载的科研生涯诠释着 "学术永动机 "的真谛——作为德国国家科学院院士,他至今保

2025-10-24.

亚马逊“帮我决定”AI上线,用户偏好精准推荐提升购物效率

亚马逊近期在购物体验智能化领域再推新举措,全新上线的人工智能选品功能正逐步覆盖美国市场。该功能以 "帮我决定 "按钮为入口,当用户浏览同类商品时,系统将综合分析浏览轨迹、搜索关键词及历史购买记录,自动生

2025-10-24.

支付宝灵光APP内测:蚂蚁集团布局AGI多模态AI战略

蚂蚁集团旗下支付宝即将推出一款名为“灵光”的AGI多模态应用,目前该产品已进入内测阶段。用户可通过手机号或支付宝账号直接登录,这是蚂蚁集团继支小宝、安诊儿、AQ之后推出的第四款独立AI应用。据内部消

2025-10-24.

热门教程

更多
  • 游戏攻略
  • 安卓教程
  • 苹果教程
  • 电脑教程

最新下载

更多
云原神
云原神 角色扮演 2025-10-24更新
查看
植物大战僵尸随机模仿者
植物大战僵尸随机模仿者 休闲益智 2025-10-24更新
查看
鹅鸭杀国际服
鹅鸭杀国际服 休闲益智 2025-10-24更新
查看
修仙四万年正
修仙四万年正 角色扮演 2025-10-24更新
查看
我的汤姆猫旧
我的汤姆猫旧 休闲益智 2025-10-24更新
查看
宝宝房屋设计师
宝宝房屋设计师 休闲益智 2025-10-24更新
查看
僵尸作战模拟器国际
僵尸作战模拟器国际 飞行射击 2025-10-24更新
查看
猫咪模拟器
猫咪模拟器 休闲益智 2025-10-24更新
查看
斗魂大陆
斗魂大陆 角色扮演 2025-10-24更新
查看