雷军千万年薪招揽的DeepSeek作者,究竟是何方神圣?

10月14日,小米与北京大学联合署名的论文正式发表于arXiv预印本平台。此前曾被曝以千万年薪被小米创始人兼CEO雷军招募的DeepSeek“天才少女”罗福莉,出现在这篇论文的通讯作者名单中。但值得注意的是,论文作者名单中并未明确标注罗福莉属于小米大模型团队。
通讯作者中的罗福莉是95后年轻学者,她本科就读于北京师范大学计算机专业,硕士毕业于北京大学计算语言学研究所计算语言学专业。罗福莉曾在阿里巴巴达摩院主导开发了多语言预训练模型VECO,并推动了AliceMind的开源工作。2024年她加入DeepSeek,参与了MoE大模型DeepSeek-V2的研发工作。去年年底,小米被曝以千万年薪从DeepSeek-V2核心开发团队中招募罗福莉,这一消息一度登上热搜引发广泛关注,但至今双方都未公开声明是否正式入职小米。
这篇创新论文提出了提升MoE模型强化学习训练效果的新方法——Rollout Routing Replay(简称R3)。实验结果证明,R3的整体性能优于GRPO、TIS这类强化学习领域优化模型性能的算法,且引入R3的所有组合方法在训练全程均未出现崩溃,训练过程中训练-推理KL散度等关键指标始终维持在较低水平,在不影响训练速度的情况下,使得极端token比例减少了一个数量级。
当前,强化学习已成为提升大语言模型核心能力的关键技术路径。然而在MoE模型中,路由机制往往容易引入不稳定性,甚至导致强化学习训练崩溃,而现有的引入重要性采样机制等方法并不能显著提升训练稳定性。与此前采取丢弃差异较大的数据之类的变通方法不同,这篇论文的研究人员期望通过解决路由分布差异——也就是R3方法来根本性解决这一问题。
论文地址:https://arxiv.org/pdf/2510.11370
01.破解强化学习崩溃的关键方法,小米团队提出R3
强化学习已成为大语言模型后期训练过程中不可或缺的核心技术,利用大规模强化学习能够使大模型更深入、更广泛地进行推理,从而获得解决复杂问题所需的高级能力。但其面临的核心挑战在于如何平衡训练效率与模型稳定性。
现代强化学习框架通常使用不同的推理引擎和训练引擎,但这种架构上的分离可能导致token概率分布出现分歧,甚至可能引发灾难性的训练崩溃。然而现有的改进方法并不能完全解决MoE模型上进行强化学习训练时出现的策略差异问题。
研究人员提出的R3方法,其工作原理是在序列生成期间从推理引擎捕获路由分布,并将其直接回放到训练引擎中。这一过程可以有效缩小训练和推理阶段的路由行为差异,其显著特征是两个引擎生成的逻辑向量的KL散度(量化两个概率分布之间差异程度的指标,值越小说明两个分布越接近)显著降低,两阶段之间概率差异显著的token数量减少了大约一个数量级。
此外,该方法可同时适用于在线策略(on-policy)和小批量离线策略强化学习场景。
论文提到了研究团队的三大主要贡献:
1、系统识别和分析了MoE模型中训练和推理之间的路由分布差异,强调了它们在训练不稳定性中的作用;
2、提出Rollout Routing Replay方法,该方法重用训练引擎内部的前向传播过程中的路由分布,以协调训练和推理之间的路由行为;
3、将R3应用于多种强化学习设置进行MoE强化学习,并表明R3在稳定性和整体性能方面优于GSPO和TIS方法。
02.可显著缩小训练-推理差异,对Agent任务大有裨益
R3的核心思路是在训练前向传播过程中重用推理路由掩码I,同时仍将softmax应用于训练逻辑以保持梯度流。
这种设计主要有两个目的:一是对齐训练和推理,确保训练回放期间使用的专家与推理期间选择的专家相匹配,从而消除专家选择中的不匹配;二是保留梯度数据流,通过仅回放掩码,梯度仍然可以流回logits而不会干扰计算图,这有助于更有效地优化路由器。
具体来看,R3在效率优化上,通过路由掩码缓存机制适配多轮对话场景,降低计算开销。
其论文提到,缓存的路由掩码具有相似的属性,对于相同的前缀token,MoE路由器应该产生相同的结果,因此来自推理引擎的路由掩码可以与KVCache一起缓存,从而无缝集成到现有推理框架中。
对于每个层级和token前缀,相应的路由掩码都存储在KVCache中。当相同的前缀出现并命中缓存时,这些掩码可以被重用,从而无需重新计算,这使得R3能够与现有前缀缓存机制无缝集成。
研究人员表示,缓存路由掩码在Agent场景中有较大应用空间。例如软件工程和网页浏览等Agent任务,都涉及自回归生成和工具调用之间的多轮交互。为了提高效率,这些过程会直接重用前几轮的KVCache,因此无需重新生成已计算的数据。
为了验证R3在缩小训练-推理差异上的有效性,研究人员使用Qwen3-30B-A3B模型进行了验证,其在推理过程中获得的路由分布缓存在SGLang上,并在Megatron框架内回放它们。
结果表明,应用R3后,训练和推理之间的KL散度从1.5×10³显著减小到7.5×10⁻⁴水平,接近于稠密模型的6.4×10⁻⁴水平,这表明其训练-推理差异显著减小。
研究人员还绘制了使用R3的训练-推理差异比率累积分布图,对于MoE模型,应用R3可将具有较大训练-推理差异的token频率降低一个数量级。
03.实测三大能力提升:整体性能、训练稳定、优化生成行为
为了评估R3对强化学习训练的性能改进效果,研究人员从BigMath、ORZ等开源数据集中筛选约10万道可验证数学题,采用AIME24、AIME25、AMC23和MATH500作为基准数据集进行评估,并在单次训练过程中每5个全局步骤测量一次模型性能。
其选择的模型是Qwen3-30B-A3B-Base及其微调模型Qwen3-30B-A3B-SFT。
评估方式是每5个全局步骤记录模型性能,最终报告最佳性能及对应训练步骤,若模型后期性能下降,则同时追踪训练崩溃步骤。
实验结果表明,在整体性能方面,R3在多步更新场景中表现优异,GRPO+R3平均得分68.05分,比GSPO高出1.29分;GSPO+R3进一步提升至69.00分,比单独使用GSPO高出2.24分。
在单步更新场景中,SFT模型上,GRPO+R3平均得分71.83分,比GRPO(62.23分)高出9.6分,比GRPO+TIS(66.24分)高出5.59分;Base模型上,GRPO+R3平均得分70.73分,比GRPO(61.69分)高出9.04分。
研究人员还发现,将R3与TIS结合使用并不能带来明显的性能提升,甚至可能会降低性能。例如在SFT模型单步设置中,TIS+R3的得分比单独使用R3低1.69分。由于R3本身已经显著降低了训练和推理之间的策略差异,因此TIS的额外校正效果微乎其微。
在训练稳定性方面:如GRPO、GRPO+TIS等未加入R3的方法在单步更新场景中均出现了训练崩溃——GRPO在第60步崩溃、GRPO+TIS在第105步崩溃。
引入R3后,所有组合方法均无崩溃,且训练过程中训练-推理KL散度等指标始终保持在较低水平。
在优化与生成行为方面,R3还能增强优化稳定性、探索行为和生成动态。下图是研究人员绘制的基础模型组训练过程中的序列长度、梯度范数、生成熵和评估分数。
结果显示,R3具有更小的梯度范数、更平滑的序列增长模式和更稳定的熵值变化。实验中使用R3时,生成的序列长度在训练开始后迅速上升,表明R3能够快速捕捉到正确的优化方向,相比之下其他两个训练过程在第80步后才缓慢上升,并且波动更为明显;同时R3始终保持着较低的梯度范数,表明优化过程更加稳定;此外,熵值在大约第25步后开始稳步上升,表明较早地开始探索策略,在不使用R3时,熵值上升更晚,并且波动较大。
04.结语:聚焦MoE模型训练难题,小米提出新思路
MoE架构如今已成为扩展现代语言模型容量的关键技术基石,其采用门控网络稀疏地激活部分专家参数,从而将模型的总参数量与推理成本分离开来,进而大幅提升了模型容量。然而,由于门控网络的敏感性,MoE模型容易受到训练不稳定性的影响,这使得路由稳健性成为模型收敛的核心挑战。
在这篇创新论文中,研究人员在训练过程中重用推理阶段的路由分布,既在保留梯度流的同时对齐专家选择。这种研究思路或许能为行业提供新的研究方向。
本文来自微信公众号:智东西(ID:zhidxcom),作者:程茜,原标题《小米AI新论文!雷军千万年薪要挖的DeepSeek天才少女署名》
免责声明
游乐网为非赢利性网站,所展示的游戏/软件/文章内容均来自于互联网或第三方用户上传分享,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系youleyoucom@outlook.com。
同类文章
欧洲采购商探访里工实业:机器人制造现场如何重塑未来工业
第138届广交会机器人展区迎来了一位特殊的访客——来自欧洲的采购商Jamie。在《我带外商进工厂》栏目的邀请下,他走进广州里工实业先进制造基地,开启了一场颠覆认知的智能制造探访之旅。当Jamie踏入
2025生成式AI报告:国产大模型覆盖超九成用户,半年增2.66亿
在2025(第六届)中国互联网基础资源大会上,中国互联网络信息中心正式对外发布了《生成式人工智能应用发展报告(2025)》。这份报告聚焦于我国生成式人工智能领域的发展现状,呈现了诸多关键数据与趋势。
同济大学导师圆桌:五大学科共绘AI+跨界融合新路径
在人工智能技术加速重塑各行业格局的当下,一场聚焦学科交叉的深度对话即将在同济大学展开。由同济大学图书馆主办的 "学科交叉中的人工智能+ "圆桌论坛,将于2025年10月21日在德文图书馆二楼报告厅举办,
智能手机AI进化:从被动响应到主动感知的产业变革
在智能手机行业迈向新阶段的浪潮中,AI智能体正成为推动产业变革的核心力量。近日,荣耀推出Magic8系列手机,同步发布自进化AI智能体操作系统MagicOS 10,通过自研智能体YOYO展示了对未来
2025日本高科技展会:AI技术革新重塑生产生活新场景
为期四天的日本高新技术博览会近日落下帷幕。这场以“人人享有创新”为核心理念的科技盛会,吸引了全球800余家企业和团体参展,其中近半数展商聚焦人工智能领域,通过覆盖工业制造、医疗健康、城市管理、生活消
热门推荐
热门教程
更多- 游戏攻略
- 安卓教程
- 苹果教程
- 电脑教程



















